8 research outputs found

    Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning

    Full text link
    The goal of a Question Paraphrase Retrieval (QPR) system is to retrieve equivalent questions that result in the same answer as the original question. Such a system can be used to understand and answer rare and noisy reformulations of common questions by mapping them to a set of canonical forms. This has large-scale applications for community Question Answering (cQA) and open-domain spoken language question answering systems. In this paper we describe a new QPR system implemented as a Neural Information Retrieval (NIR) system consisting of a neural network sentence encoder and an approximate k-Nearest Neighbour index for efficient vector retrieval. We also describe our mechanism to generate an annotated dataset for question paraphrase retrieval experiments automatically from question-answer logs via distant supervision. We show that the standard loss function in NIR, triplet loss, does not perform well with noisy labels. We propose smoothed deep metric loss (SDML) and with our experiments on two QPR datasets we show that it significantly outperforms triplet loss in the noisy label setting

    Learning When Not to Answer: A Ternary Reward Structure for Reinforcement Learning based Question Answering

    Full text link
    In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents optimized for these metrics are poor at modeling confidence. We introduce a simple new performance metric for evaluating question-answering agents that is more representative of practical usage conditions, and optimize for this metric by extending the binary reward structure used in prior work to a ternary reward structure which also rewards an agent for not answering a question rather than giving an incorrect answer. We show that this can drastically improve the precision of answered questions while only not answering a limited number of previously correctly answered questions. Employing a supervised learning strategy using depth-first-search paths to bootstrap the reinforcement learning algorithm further improves performance.Comment: Accepted at NAACL 2019. Version 1 was presented at NIPS 2018 workshop on Relational Representation Learnin

    Proximate Dirac spin liquid in the J1-J3 XXZ model for honeycomb cobaltates

    Full text link
    The concerted effort to find materials that host the enigmatic quantum spin liquid state has shone the spotlight on a variety of honeycomb cobaltates. While initially proposed as candidate realizations of the elusive Kitaev spin liquid, ab initio calculations and neutron scattering experiments have converged on their low energy description being a J1-J3 XXZ spin model with weak compass anisotropies. Here, we combine exact diagonalization and density-matrix renormalization group calculations with parton mean field theory and Gutzwiller wavefunctions, to argue for the presence of a proximate Dirac SL phase in the phase diagram of this model. This Dirac SL is shown, within parton mean field theory, to capture the broad continuum seen in the temperature (T ) and magnetic field dependent THz spectroscopy of BaCo2(AsO4)2. Weak disorder or zig-zag order coexisting with the SL is found to support a metallic thermal conductivity κT\kappa \propto T as reported in NaCo2TeO6.Comment: 9 pages, 6 figure

    Enhanced stability of free viscous films due to surface viscosity

    No full text
    The stability of a thin liquid film bounded by two free surfaces is examined in the presence of insoluble surface-active agents. This study is broadly aimed at understanding enhanced stability of emulsions with the increasing surface concentration of surface-active agents. Surface-active agents not only cause gradients in surface tension but could also render surface viscosity to be significant, which could vary with surface concentration. We employ two phenomenological models for surface viscosity, a linear viscosity model and a nonlinear viscosity model. In the latter, surface viscosity diverges at a critical concentration, which is termed the "jamming"limit. We show that rupture can be significantly delayed with high surface viscosity. An analysis of the "jamming"limit reveals that Γi(nl)>3D/M provides a simple criterion for enhanced stability, where Γi(nl), D, and M are the normalized initial surfactant concentration, disjoining pressure number, and Marangoni number, respectively. Nonlinear simulations suggest that high surface viscosity renders free films remarkably stable in the jamming limit, and their free surfaces behave like immobile interfaces consistent with experimental observations. Furthermore, it is shown that rupture times can be arbitrarily increased by tuning the initial surfactant concentration, offering a fluid dynamical route to stabilization of thin films

    The genetic landscape of mutations in Burkitt lymphoma

    No full text
    Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene
    corecore